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2.8. Modes of convergence

Definition 2.23. We say that Xn
P→ X (“Xn converges to X in probability”) if for

any δ > 0, P(|Xn − X | > δ) → 0 as n → ∞. Recall that we say that Xn
a.s.→ X if

P (ω : lim Xn(ω)= X (ω))= 1.

2.8.1. Almost sure and in probability. Are they really different? Usually
looking at Bernoulli random variables elucidates the matter.

Example 2.24. Suppose An are events in a probability space. Then one can see that

(a) 1An
P→ 0⇐⇒ lim

n→∞
P(An)= 0. (b) 1An

a.s.→ 0⇐⇒P(limsup
n→∞

An)= 0.

By Fatou’s lemma, P(limsupn→∞ An)≥ limsupP(An), and hence we see that a.s con-
vergence of 1An to zero implies convergence in probability. The converse is clearly
false. For instance, if An are independent events with P(An) = n−1, then by the sec-
ond Borel-Cantelli, P(An) goes to zero but P(limsup An) = 1. This example has all
the ingredients for the following two implications.

Lemma 2.25. Suppose Xn, X are r.v. on the same probability space. Then,

(1) If Xn
a.s.→ X, then Xn

P→ X.
(2) If Xn

P→ X “fast enough” so that
∑

n P(|Xn − X | > δ)<∞ for every δ> 0, then
Xn

a.s.→ X.

PROOF. Note that analogous to the example,

(a) Xn
P→ X ⇐⇒ ∀δ> 0, lim

n→∞
P(|Xn − X | > δ)= 0.

(b) Xn
a.s.→ X ⇐⇒ ∀δ> 0, P(limsup

n→∞
|Xn − X | > δ)= 0.

Thus, applying Fatou’s we see that a.s convergence implies convergence in proba-
bility. By the first Borel Cantelli lemma, if

∑
n P(|Xn − X | > δ) < ∞, then P(|Xn −

X | > δ i.o) = 0 and hence limsup |Xn − X | < δ. Apply this to all rational δ to get
limsup |Xn − X | = 0 and thus we get a.s. convergence. ■

Exercise 2.26. (1) If Xn
P→ X , show that Xnk

a.s.→ X for some subsequence.
(2) Show that Xn

a.s.→ X if and only if every subsequence of {Xn} has a further
subsequence that converges a.s.

(3) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that
aXn +bYn

P→ aX +bY and XnYn
P→ XY .

2.8.2. In distribution and in probability. We say that Xn
d→ X if the dis-

tributions of Xn converges to the distribution of X . This is a matter of language,
but note that Xn and X need not be on the same probability space for this to make
sense. In comparing it to convergence in probability, however, we must take them to
be defined on a common probability space.

Lemma 2.27. Suppose Xn, X are r.v. on the same probability space. Then,

(1) If Xn
P→ X, then Xn

d→ X.
(2) If Xn

d→ X and X is a constant a.s, then Xn
P→ X.
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PROOF. (1) Suppose Xn
P→ X . Since for any δ> 0

P(Xn ≤ t)≤P(X ≤ t+δ)+P(X −Xn > δ), and P(X ≤ t−δ)≤P(Xn ≤ t)+P(Xn−X > δ),

we see that limsupP(Xn ≤ t) ≤ P(X ≤ t+δ) and liminfP(Xn ≤ t) ≥ P(X ≤
t−δ) for any δ> 0. Taking δ ↓ 0 and letting t be a continuity point of the cdf
ofX , we immediately get limP(Xn ≤ t)=P(X ≤ t). Thus, Xn

d→ X .
(2) If X = a a.s (a is a constant), then the cdf of X is FX (t) = 1t≥a. Hence,

P(Xn ≤ t−δ) → 0 and P(Xn ≤ t+δ) → 1 for any δ> 0 as t±δ are continuity
points of FX . Therefore P(|Xn −a| > δ)→ 0 and we see that Xn

P→ a. ■

Exercise 2.28. (1) Give an example to show that convergence in distribution
does not imply convergence in probability.

(2) Suppose that Xn is independent of Yn for each n (no assumptions about
independence across n). If Xn

d→ X and Yn
d→ Y , then (Xn,Yn) d→ (U ,V )

where U d= X , V d= Y and U ,V are independent. Further, aXn + bYn
d→

aU +bV .
(3) If Xn

P→ X and Yn
d→ Y (all on the same probability space), then show that

XnYn
d→ XY .

2.8.3. In probability and in Lp. How do convergence in Lp and convergence
in probability compare? Suppose Xn

Lp
→ X (actually we don’t need p ≥ 1 here, but only

p > 0 and E[|Xn − X |p]→ 0). Then, for any δ> 0,

P(|Xn − X | > δ)≤ δ−pE[|Xn − X |p]→ 0

and thus Xn
P→ X . The converse is not true as the following example shows.

Example 2.29. Let Xn = 2n w.p 1/n and Xn = 0 w.p 1− 1/n. Then, Xn
P→ 0 but

E[X p
n ]= n−12np for all n, and hence Xn does not go to zero in Lp (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence
in probability that would ensure convergence in Lp. Let us stick to p = 1. Is there a
reason to expect a (weaker) converse? Indeed, suppose Xn

P→ X . Then write E[|Xn −
X |]=

∫∞
0 P(|Xn−X | > t)dt. For each t the integrand goes to zero. Will the integral go

to zero? Surely, if |Xn| ≤ 10 a.s. for all n, (then the same holds for |X |) the integral
reduces to the interval [0,20] and then by DCT (since the integrand is bounded by 1
which is integrable over the interval [0,20]), we get E[|Xn − X |]→ 0.

As example 2.29 shows, the converse is not true in full generality either. What
goes wrong in this example is that with a small probability Xn can take a very very
large value and hence the expected value stays away from zero. This observation
makes the next definition more palatable. We put the new concept in a separate
section to give it the due respect that it deserves.

2.9. Uniform integrability

Definition 2.30. A family {Xi}i∈I of random variables is said to be uniformly inte-
grable if given any ε> 0, there exists A large enough so that E[|Xi|1|Xi |>A]< ε for all
i ∈ I.

Example 2.31. A finite set of integrable r.v.s is uniformly integrable. More inter-
estingly, an Lp-bounded family with p > 1 is u.i. For, if E[|Xi|p] ≤ M for all i ∈ I for
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some M > 0, then E[|Xi|1|Xi |>t] ≤ t−(p−1)M which goes to zero as t →∞. Thus, given
ε> 0, one can choose t large so that supi∈I E[|Xi|1|Xi |>t]< ε.

This fails for p = 1 as the example 2.29 shows a family of L1 bounded random
variables that are not u.i. However, a u.i family must be bounded in L1. To see this
find A > 0 so that E[|Xi|1|Xi |>A] < 1 for all i. Then, for any i ∈ I, we get E[|Xi|] =
E[|Xi|1|Xi |<A]+E[|Xi|1|Xi |≥A]≤ A+1.

Exercise 2.32. If {Xi}i∈I and {Yj} j∈J are both u.i, then {Xi +Yj}(i, j)∈I×J is u.i. What
about the family of products, {XiYj}(i, j)∈I×J?

Lemma 2.33. Suppose Xn, X are r.v. on the same probability space. Then, the fol-
lowing are equivalent.

(1) Xn
L1
→ X.

(2) Xn
P→ X and {Xn} is u.i.

PROOF. If Yn = Xn −X , then Xn
L1
→ X iff Yn

L1
→ 0, while Xn

P→ X iff Yn
P→ 0 and by

the first part of exercise 2.32, {Xn} is u.i if and only if {Yn} is. Hence we may work
with Yn instead (i.e., we may assume that the limiting r.v. is 0 a.s).

First suppose Yn
L1
→ 0. Then we showed that Yn

P→ 0. To show that {Yn} is u.i,
let ε > 0 and fix Nε so that E[|Yn|] < ε for all n ≥ Nε. Then, pick A > 1 so large
that E[|Yk|1|Yk |>A] ≤ ε for all k ≤ N. With the same A and any k ≥ Nε, we get
E[|Yk|1|Yk |>A] ≤ A−1E[|Yk|] < ε since A > 1 and E[|Yk|] < ε. Thus we have found
one A which works for all Yk. Hence {Yk} is u.i.

Next suppose Yn
P→ 0 and that {Yn} is u.i. Then, fix ε > 0 and find A > 0 so that

E[|Yk|1|Yk |>A]≤ ε for all k. Then,

E[|Yk|]≤E[|Yk|1|Yk |≤A]+E[|Yk|1|Yk |>A]≤
∫A

0
P(|Yk| > t)dt + ε.

For all t ∈ [0, A], by assumption P(|Yk| > t)→ 0, while we also have P(|Yk| > t)≤ 1 for
all k and 1 is integrable on [0, A]. Hence, by DCT the first term goes to 0 as k →∞.

Thus limsupE[|Yk|]≤ ε for any ε and it follows that Yk
L1
→ 0. ■

Corollary 2.34. If Xn
a.s.→ X, then Xn

L1
→ X if and only if {Xn} is u.i.

To deduce convergence in mean from a.s convergence, we have so far always
invoked DCT. As shown by Lemma 2.33 and corollary 2.34, uniform integrability
is the sharp condition, so it must be weaker than the assumption in DCT. Indeed,
if {Xn} are dominated by an integrable Y , then whatever A works for Y in the u.i
condition will work for the whole family {Xn}. Thus a dominated family is u.i., while
the converse is false.

Remark 2.35. Like tightness of measures, uniform integrability is also related to
a compactness question. On the space L1(µ), apart from the usual topology coming
from the norm, there is another one called weak topology (where fn → f if and only
if

∫
fn gdµ→

∫
f gdµ for all g ∈ L∞(µ)). The Dunford-Pettis theorem asserts that pre-

compact subsets of L1(µ) in this weak topology are precisely uniformly integrable
subsets of L1(µ)! A similar question can be asked in Lp for p > 1 where weak topology
means that fn → f if and only if

∫
fn gdµ→

∫
f gdµ for all g ∈ Lq(µ) where q−1+p−1 =

1. Another part of Dunford-Pettis theorem asserts that pre-compact subsets of Lp(µ)
in this weak topology are precisely those that are bounded in the Lp(µ) norm.


